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Theoretical Considerations of the 
Effects of Rapid Heating of Solids on 
Their Apparent Thermal Properties 1 

P. G.  K l e m e n s  2 

The conditions are investigated for thermal properties to change from their 
normal values when solids are heated very rapidly. The properties considered 
are specific heat, thermal expansion, thermal conductivity, and thermal 
diffusivity. Over times which may be as long as a microsecond, the heated solid 
is unable to expand: the appropriate values of specific heat and thermal 
conductivity are then those at constant volume rather than constant pressure, in 
those alloys where thermal equilibrium requires diffusion, its establishment is 
delayed, and if solids do not have time to expand, the diffusion coefficient is 
reduced. For heating times below nanoseconds, the electrons and the lattice may 
be at different temperatures, particularly if the energy is initially imparted to 
the electrons. The temperature of the electron gas of metals may then approach 
the degenerary temperature. The apparent specific heat of a decoupled system 
departs from the steady-state value in a manner which depends on how 
temperature is measured. In such a decoupled system the concepts of thermal 
conductivity and thermal diffusivity must be used with care. 

KEY WORDS: diffusion; electrons; expansion; phonons; rapid heating; 
relaxation times; specific heat; thermal conductivity. 

1. I N T R O D U C T I O N  

In  the de sc r ip t i on  of  the  t h e r m a l  p rope r t i e s  of  m a t t e r  one  usua l ly  a s sumes  

tha t  the  sys tem is in t h e r m a l  equ i l ib r ium.  Al t e rna t ive ly ,  in the  case of  

t r a n s p o r t  p roper t i e s ,  one  a s sumes  tha t  the  d e p a r t u r e s  f r o m  t h e r m a l  

e q u i l i b r i u m  are  ve ry  small ,  so tha t  the va r ious  cu r ren t s  a re  l inear  func t ions  
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of the driving forces which cause them, i.e., gradients in temperature or in 
electric or in chemical potentials. This raises the question of under what 
conditions the apparent thermal properties depend upon heating rates and 
when nonlinear effects become important in transport properties. 

The thermal properties of solids may be described in terms of a super- 
position of excitations, in particular, lattice vibrations, free electrons, and 
electromagnetic waves, and also localized excitations such as electronic 
energy levels of atoms or groups of atoms and atomic configurations. 
Energy exchange between these various excitations takes place 
continuously, and as a result of the size and complexity of the system on 
a microscopic scale, these interactions tend to bring the excitations into a 
state of mutual equilibrium or to a common temperature. The rate at 
which this thermal equilibrium is established can be characterized by one 
or more relaxation times. These are defined by the rate with which mutual 
equilibrium would be restored if the various excitations had been thrown 
out of equilibrium at some instant and if the system were then left to return 
to equilibrium in the absence of any further disturbances. 

The relaxation rate also provides an upper limit of the rate at which 
a solid can be heated without its apparent thermal properties departing 
significantly from those measured under steady-state conditions. 

Relaxation times are generally functions of temperature and increase 
as the temperature is lowered. At very low or cryogenic temperatures they 
can be quite long, so that temperature differences can be established and 
maintained between different subsystems (e.g., spins and phonons) over 
times comparable to those of laboratory measurements. In fact, it is some- 
times difficult to bring all parts of a system to a common temperature at 
low temperatures. Apparent thermal properties are then influenced by the 
time scale of measurements. In many cases only a metastable equilibrium 
is reached. At ordinary temperatures the relaxation times are usually short, 
and equilibrium is attained rapidly, although metastable equilibria are 
sometimes encountered. At high temperatures the relaxation times are 
generally quite short, and different parts of the system, such as electrons 
and lattice vibrations, will be at different temperatures only at very high 
heating rates. Nevertheless, except for this differences in time scale, similar 
principles govern the establishment of equilibrium during rapid heating. 

There is, however, one important difference between low and high 
temperatures. Heating causes thermal stresses, and true equilibrium 
requires thermal expansion, which eliminates these stresses. The rate at 
which this occurs depends on the dimensions of the heated regions and on 
the velocity of elastic waves. The times required for elastic relaxation show 
less temperature sensitivity than the internal relaxation times, so that at 
high temperatures true equilibrium is often delayed by these inertial effects. 
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Furthermore, the differences between properties at constant volume and at 
constant or zero stress become more pronounced the higher the tem- 
perature. The most obvious dependences of thermal properties on heating 
rate above room temperature are therefore owing to this delay in thermal 
expansion. 

The establishment of thermal equilibrium always takes a long time if 
it requires atomic movement, such as the destruction of long-range and 
short-range order on heating alloys, the dissolution of segregated phases, 
and the reduction of solute atmospheres around dislocations. Alloys thus 
respond frequently more slowly to temperature changes than pure metals. 
In the case of very rapid heating, when the material has no time to expand 
and diffusion occurs at a constant volume, this process is even more slow. 

Similar considerations apply to conduction properties such as thermal 
conductivity and thermal diffusivity. One defines a mean free path of the 
mobile carriers, such as electrons and phonons, proportional to their 
relaxation time. These mean free paths are quite short, ranging from 10 to 
100 •. Departures from Fourier's law in thermal conduction can be expec- 
ted only for such high temperature gradients that the fractional change in 
absolute temperature is appreciable over comparable distance. This condi- 
tion is rarely attained, except in the case of radiative heat transfer through 
partially transparent media. 

2. INERTIAL EFFECTS 

When a solid is heated under quasi-equilibrium conditions at constant 
pressure, it expands, but when it is heated very rapidly, the inertia of the 
material can delay the expansion. In the extreme case of rapid heating, the 
volume stays constant and the pressure increases by AP, where 

AP = ~KB AT (1) 

Here A T  is the temperature rise, KB the bulk modulus, and c~ the 
volumetric coefficient of thermal expansion. 

The time tx required for the pressure to relax and for the heated 
material to reach its equilibrium volume depends on the inertia of the 
body, its dimensions, and how the body is constrained by other bodies. 
One expects tx to be given approximately by 

tx ~ L/v, (2) 

where L is the distance from the point where heat is deposited to the 
nearest free surface, and where Vs is the velocity of compressional waves. 
Since sound velocities in solids depend primarily on density rather than 



610 Klemens 

pressure, decreasing with increasing volume, vs is never larger than the 
sound velocity of the cold or unexpanded material, and tx  will be deter- 
mined by that value of vs. 

For  example, if energy deposition is about 10 -5 cm below the surface, 
since vs is typically around 3 x 105 cm. s 1, the expansion time t~ is around 
3 x 10 11 s. In cases where the energy is deposited deep within the body, 
such as by gamma rays or by electric currents, L can be much larger and 
tx  would be correspondingly increased. For  a wire of 0.6-ram diameter, 
rapidly heated by current, tx  would be as long as 10-7 s. 

There are several consequences of delayed expansion. All properties--  
equilibrium as well as conduction properties--which are normally 
measured as a function of temperature at atmospheric pressure must now 
be regarded as changing with temperature at constant volume, at least 
initially, rather than at constant pressure. This will tend to decrease the 
specific heat and tend to increase electrical conductivities as well as thermal 
conductivities and thermal diffusivities. 

3. ATOMIC DI FFUSION 

One mechanism which yields relatively long times for the estab- 
lishment of thermal equilibrium is that of atomic diffusion. Changes in 
temperature are sometimes accompanied by changes in the equilibrium 
positions of atoms, which needs diffusion. This is the case when alloys 
change their degree of order with temperature, when segregated solute 
atoms move into the matrix on heating, or when there are solute atmos- 
pheres around dislocations. 

One can write the diffusion coefficient in the form [1 ] 

D = D o e x p ( - H / k T )  (3) 

where D o ~  a20)D, a being the interatomic distance and o9 D the (circular) 
Debye frequency, typically around 5 x 1013 s -1. Also, H is an activation 
energy, k the Boltzmann constant, and T the absolute temperature. Typical 
activation temperatures H/k  range from 10,000 K up. If the change in 
atomic order involves movements over distances of 3a, the time required to 
establish equilibrium by diffusion is 

tD "~ (3a)2/D = lO(~oo)-~ e ~/kr (4) 

and is strongly dependent on H/kT. For example, if T = 1 0 0 0 K ,  
H / k =  10,000 K, OD = 5 X 10'3S -1, then tD -- 5 X 10 9 S. If the establishment 
of equilibrium required motion over longer distances, such as when solute 
atoms move from precipitates into solid solution, the equilibrium time is 
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correspondingly lengthened and may even be comparable to the time 
needed for thermal expansion. 

Another point to consider is that diffusion rates are sensitive to 
volume. If the solid is unable to expand because of inertial constraints, the 
time required for diffusion will, in some cases, be controlled by the expan- 
sion of the heated material. 

The diffusion coefficient, as a function of pressure, is 

D(P) = D(0) e x p ( - A H / k T )  (5) 

where the increase in the activation enthalpy H is 

AH= VaP (6) 

and where Va is a volume of the order of the volume per atom. One can 
express thermal expansion in the form 

A V/V= 7CT/KB (7) 

where 7 is the Griineisen constant, KB the bulk modulus, and C the specific 
heat per unit volume. If expansion is prevented, the pressure which is 
generated is 

P = K R A V/V= 7CT (8) 
so that 

H/k T= 7CVa/k (9) 

Thus AH/kT is only weakly dependent on temperature and D(P), the dif- 
fusivity at constant volume, is related to D(0), that at zero pressure, by 

D(P) = D(o) exp(--TCVa/~:) (lO) 

Taking C as 3 J - cm 3. K - l ,  ]: as 2, and Va as 1 x 10 23 cm 3, so that 
AH/kT= 4.3, D(P)~-0.014 D(0). Thus diffusion rates are decreased by a 
factor 50 to 100 relative to those at zero pressure. 

In the numerical example selected above, tD was 5 x 10 .9 s, but using 
D(P) in place of D(0), it would be around 3 x 10 -7 s. If tx of Eq. (2), the 
time required for thermal expansion, were to fall between those two limits, 
tD should actually be equated to tx, for diffusion would be inhibited until 
the material attained its expanded state. 

4. LOCAL EQUILIBRIUM IN SOLIDS 

In addition to the effects of delayed equilibrium due to the need for 
atomic movement and for the movement of macroscopic elements of the 
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material, there is the need to establish equilibrium between different 
microscopic modes of excitation at each location of the solid. The 
corresponding relaxation times are quite short. 

We picture the thermal energy of a solid to reside in subsystems such 
as lattice vibrations or phonon gas, and the gas of free electrons in the case 
of metals. There may be other excitations such as magnetic moments, other 
localized electron states, changes in configuration, etc. These subsystems 
must come to a new equilibrium, each within itself and also with each 
other. The time needed to do so can be described by a set of relaxation 
times. 

Most of our information about relaxation times in solids is derived 
from the measured electrical and thermal conductivities. The electrical con- 
ductivity can be expressed as 

a = (N/m)e2ze (11) 

where for free electrons m is the electron mass and N the electron density. 
In a solid N / m  takes on an effective value. Also, e is the electronic charge, 
while re is the relaxation time. Some values of % for simple metals are given 
in Table I. 

The relaxation time % is a measure of the time required by the 
electron gas to lose excess momentum supplied by the electric field. In pure 
metals this occurs by means of electron-phonon interactions; in alloys the 
scattering of electrons by the solute atoms makes an additional and major 
contribution to the relaxation rate. In the electron-phonon interaction an 
electron loses memory of its direction and, also, changes its energy by kO, 
where 0 is the Debye temperature [2].  

In order for an electron to come into energy equilibrium with the lat- 
tice vibrations, it must randomly change its energy by an amount kT.  Near 
the Debye temperature this is achieved by a single electron-phonon inter- 
action, but at very high temperatures it takes several steps of order kO to 

Table I. Relaxation Times (in seconds) 

Metal T (K) % ~th 

Cu 300 3 • 10-14 3 x 10 14 
Cu 1400 6 • 10 15 1.5 • 1 0  -13  

AI 300 1 • 10 14 1 • 1 0  -14  

AI 900 3 • 10-15 2 • 1 0  -14  

Ti 300 1• is 1• 15 
Ti 1500 2• 16 5• 15 
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change its energy by kT. In this random walk along the energy coordinate, 
the number of steps required is (T/O) 2, so that the relaxation time of the 
electron gas for the attainment of thermal equilibrium is, if T ~  0, 

~th = ~'e( r)(T/O) 2 = Z'e(0)(T/0) (12) 

The latter result follows because re oc lIT. 
In alloys the thermal relaxation time is the same as in a pure metal, 

since the scattering by solute atoms is elastic [-2] and does not contribute 
to thermal relaxation. 

As seen from Table I, electronic relaxation times are very short, and 
even though rth at high temperatures is an order of magnitude larger, the 
longest relaxation time is around 10 13 s. It is only when energy is 
deposited directly into the electron gas, so that the electron temperature 
can exceed the lattice temperature by an order of magnitude, that the 
relaxation time can approach 10 -12 s, a time scale which has become 
recently accessible to observation [3].  

The relaxation times for the establishment of mutual equilibrium 
between different groups of lattice waves are also very short. They can be 
derived from observed lattice thermal conductivities or from the theory of 
anharmonic three-phonon interactions. Most of the vibrational energy 
resides in lattice modes of high frequency, near and just below the Debye 
frequency 

~o D = 2rckO/h (13) 

where h is the Planck constant. From theory, for modes of that frequency 
[4] 

l/'Cth = A~oD(1 + T/O) (14) 

Here A =272kO/pa 3, 7 being the Griineisen constant and /~ the shear 
modulus, so that typically A 20.1.  Thus with coD~3 x 1013s 1, zth for 
phonons is typically around 10-12 to 10 13 s. 

5. HEAT CAPACITY 

We now wish to examine the consequences to the apparent thermal 
properties of a finite relaxation time between subsystems of a solid. The 
most important property is the heat capacity. 

Consider for simplicity a system which consists of only two loosely 
coupled subsystems, labeled 1 and 2, with heat capacities C1 and C2 and 
with relaxation times ~1 and %, respectively. If they are at slightly different 
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temperatures, the same amount of energy per unit time would be 
transferred between them during their approach to equilibrium, so that 

C~/% = C2/% (15) 

Now assume that energy is deposited from an external source at a rate 
W per unit time and that only subsystem 1 receives external energy 
directly. The two subsystems are consequently at different temperatures T~ 
and T2; energy balance requires 

C ~ ( d T j d t )  = W -  ( C 1 / ~ I ) ( T 1 -  7"2) (16) 

C2(dT2/dt) = ( C 1 / Z l ) ( T 1 -  T2) 

= ( C 2 / , 2 ) ( T ~ - T O  

and also 
W =  C l ( d T j d t )  + C2(dT2/dt) 

(17) 

(18) 

The apparent specific heat will depend on which subsystem receives 
energy (i.e., plays the role of subsystem 1) and whether the "thermometer" 
is attached to system 1 or system 2 and, thus, measures T1 or T2. 

If "L- 1 and z2 are sufficiently short, A T =  T 1 - -  T2 will be small, and the 
apparent specific heat, defined by 

C(dT/dt)  = W (19) 

will be C = C 1 + C2,  irrespective of whether T is identified with T1 or 7"2. 
If the relaxation times are long, A T is no longer negligible. Let us con- 

sider the case when the thermometer measures T~. The apparent specific 
heat, defined by Eq. (19) with T =  T1, now lies between C~ and C~ + C2. 
From Eqs. (15) and (16) 

W - -  C l(dT1/dl ) = C2(dT2/dt) = C2 d( T 1 - A T) /d t  (20) 

and from Eqs. (15) and (17) 

A T/za = dTa/dt = d r j d t  - d(A T) /d t  (21) 

If A T =  0 at t = 0, the solution to Eq. (21) makes A T  increase as a function 
of time. In the special case when dTm/dt is constant, Eq. (21) yields 

A T =  zz(dT1/dt)[1 - e -'/~2] (22) 

so that A T  eventually reaches a constant value. Other solutions can be 
constructed by superposition. 
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Using Eq. (18) and defining C =  W/(dT1/dt), one obtains 

C = C~ + C2 - C2(dA T/dt)/(dT1/dt) (23) 

This makes the apparent specific heat depend on time. In the special case 
above when dT~/dt is constant, and A T  is given by Eq. (22), 

C =  C 1 + Cz[1 - e  -'/~2] (24) 

It may be possible to shape W(t), the energy deposition as a function of 
time, to make dT1/dt constant, and to use this simple equation to extract 
C1, C2, ~2, and z 1 from C(t). Alternatively, one can use Eq. (21) and the 
observed time dependence of Tl(t) to calculate AT and ~2 numerically and 
then to calculate C1 and C2 from Eq. (20). 

In the case when the thermometer measures T2 and with similar 
assumptions, one obtains in place of Eq. (24) 

C =  W(dT2/dt) ~ = C2+ C~E1 - e  t/,2] (25) 

5.1. Energy Deposited into Electron Gas 

Consider a metal or alloy heated rapidly at constant volume by energy 
deposition directly into the electron gas, as in the case of incident 
electromagnetic radiation. Thus T1 is the temperature of the electron gas, 
and T 2 that of tile lattice. The two component of specific heat, C E and Cp, 
are at the ratio [1 ] 

C E / C  P ~- C 1 / C  2 = T1/T v if T <  r F 

-2~! if T > T v  (26) 

where TF is of the order of the degeneracy temperature of the electron gas. 
To obtain r l ,  one must generalize zth of Eq. (12) to the case when the 

electron temperature T1 differs from the lattice temperature T2, i.e., 

21 = ze(T2)(T1/O) 2 = re(O ) T2/OT2 (27) 

Using Eqs. (26) and (15) 

r2 = re(O) Tv T1/OT2 if T1 < TF (28a) 

= 2%(0) T2/OT2 if T 1 > Tv (28b) 

Thus from Eq. (28a), taking re(0) = 10 -14 s and TF = 100 0, one finds z2 "" 
lO-12(TJT2) s. If T1 = 30,000 K and T 2 = 300 K ,  the relaxation time 272 in 
Eq. (24) will initially be as long as 10 los. Of course, ~2 will decrease as 
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T2 increases, so that the time-dependent term in Eq. (24) is not really an 
exponential, but the growth of the C2 term is essentially governed by the 
initial value of %. 

In addition to the delayed appearance of the lattice specific heat C2, 
which represents a large change in the specific heat, albeit short-lived, there 
will be the effect due to delayed thermal expansion. The appropriate delay 
time tx of Eq. (2) depends on the depth of energy deposition, and can 
range from 10-9 to 10 6 s. The change in specific heat, being the difference 
between specific heat at constant pressure and that at constant volume, is 
given by 

A C  = Cp - C v = T~2KB = ~:2CZT/KB (29) 

where c~ is the coefficient of thermal expansion, 7 the Griineisen coefficient. 
This change is much smaller, being only about 10 % at 1000 K, but persists 
over a longer time than that due to the delay in heating the lattice. 

6. THERMAL CONDUCTIVITY AND THERMAL DIFFUSIVITY 

The thermal conductivity of metals and alloys is additively composed 
of contributions from electrons and phonons [4], i.e., 

2 = 2z + 2v (30) 

while nonmetals have only the phonon contribution 2v. Now 

2E = (1 /3)CEVEIE (31) 

"~e = (1/3 ) C v v v l p  (32) 

where CE and Cp are the specific heats (per unit volume) of the electron 
gas and of the lattice waves or phonons. Also, VE and ve are the electron 
and phonon velocities, and lE and lv their mean free paths, which are 
related to the relaxation times by l E =/)E"CE and lp =/)p'Cp. 

In most cases 2E is related to the electrical conductivity a by the 
Sommerfeld value of the Lorenz ratio 

2defT= ( ~zz/3 )( k / e  ) 2 (33) 

where k is the Boltzmann constant and e the electronic charge. 
Equation (33) is based on two assumptions: T is well below the degeneracy 
temperature Tv ,  and the relaxation time rE is the same as for electrical 
conduction. 

Now ~E is limited either by the time it takes for electrons to dissipate 
their momentum or by the time required for the electron gas to come to a 
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common temperature I-2]. Thus if % is the relaxation time in a, rE for 
thermal conduction is given by 

1/r  E : 1/r  e -[- 1/rth (34)  

where rth is given by Eq. (12). At sufficiently high temperatures rE is thus 
less than %, and r E is less than given by Eq. (33). Electron-electron 
interactions, which are also more effective for thermal relaxation than for 
electrical resistance, will reinforce this trend at higher temperatures. On the 
other hand, departures from high degeneracy--as T approaches Tv--will 
usually work in the opposite sense. 

At high temperatures it is difficult to measure thermal conductivity by 
steady-state methods, and transient measurements are frequently used. 
These yield the thermal diffusivity 

Z~ = )#C = (.~E + )~p)/(CE + C~,) (35) 

In the definition of Dt it is implied that the electron gas and the phonon 
gas are everywhere at a common temperature, even though each compo- 
nent contributes independently to the heat current. This holds provided 
heating is slow compared to the relaxation time rth and provided the 
temperature gradient is small so that vEz E grad T is small compared to T. 

At high heating rates one first encounters conditions such that the 
inertial constraints keep the material at constant volume rather than permit 
the normal thermal expansion. This will change both the thermal and the 
electrical conductivities, but not the Lorenz ratio, and also the specific 
heat. The change in thermal diffusivity D t will be somewhat larger than 
that in 2. Because electrons and phonons remain at a common tem- 
perature, thermal diffusivity as defined by Eq. (35) is still a valid concept, 
and 2 can be deduced from Dr, provided the value of C is estimated from 
the amount of thermal expansion allowed during the time of thermal 
diffusion. 

6.1. Thermal Conductivity at Constant Volume 

At heating rates such that (1 /T)dT/d t  exceeds 1/tx, i.e., typically 
l 0  7 S 1 thermal expansion is surpressed and the conductivities change with 
temperature at constant volume. 

The electrical resistivity at zero pressure has the form I-5] 

p = A T(1 + &~T) (36) 

where c~ is the volume coefficient of thermal expansion, and 

6 = (V/p)  dp /dV  (37) 
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For simple metals, 6 ranges from 6 to 8, and it is somewhat smaller for 
alloys. The change in 2E is proportional to that in ~ [6],  so that, for a 
temperature increase AT 

A2E = C~6 AT2E  (38) 

There is a similar change in 2v, with a value of 6 typically around 8. 
For a temperature increase of A T = I O O O K  with 6 = 6  and 

c~=7x 10 5K 1, the fractional change in thermal conductivity due to 
heating at constant volume is A2/2=c~6 AT=0.4.  The corresponding 
decrease in specific heat, estimated from Eq. (29), is 0.12, so that the 
thermal diffusivity is increased by almost 60 %. 

6.2. Electrons and Phonons Decoupled 

At very high heating rates, such that ( l /T )d T /d t  becomes comparable 
to l / z2  of Eq. (28), electron and lattice temperatures will begin to diverge; 
the electrons and phonons will have different temperature distributions in 
space. Under these conditions, the concept of thermal diffusivity becomes 
inappropriate and must be carefully defined. In place of Dt of Eq. (35) one 
must define individual thermal diffusivities DE =2E/CE and Dp =2p/Cp.  
Since the two excitations have different temperature gradients, one must 
use two equations of thermal conduction, linked by a source term, 
respectively sink term, describing the heat transfer from one system to the 
other. 

In particular, if heat is initially deposited into the electron gas, it may 
be possible to neglect 2p. However, the time-dependent conduction 
equation for the electronic heat must have a sink term proportional to the 
instantaneous temperature difference T E -  Tp. Also, in 2E the term 1/Zth of 
Eq. (34) must be modified, as in Eq. (27), so that 

"Cth = Z'e(0 ) T~/TpO (39) 
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